

Axial piston units with DS2 secondary control A4VSG Series 10 and 3x

RE 92058

Edition: 11.2018 Replaces: 12.2017

Features

- Highly dynamic rotary drive
- Motor and generator operation for both directions of rotation
- With energy recovery and energy storage
- With speed, position, or torque control for high control performance and dynamics
- Throttle-free coupling and energy transmission of any number of independently operating axial piston units (motor or generator operation) on a common supply line with constant working pressure. Compact digital control electronics.

For highly dynamic applications

- Sizes 40 to 1000
- Nominal pressure 315 bar
- Maximum pressure 400 bar
- Closed circuit

Contents

Type code	2
Function	4
Circuit diagram DS Sizes 40 to 1000	5
Working pressure range	6
Technical data	7
Permissible radial and axial loading of the drive shaft	8
DS2R speed control	9
Incremental encoder GEL 293	10
Connector for solenoids	10
Swivel angle indicator AWXF	11
Electrically releasable check valve RVE	12
Anti-cavitation valve SA	12
Digital controller assembly group SYHNC100-SEK3x	13
Dimensions, size 40 to 1000	14
A4VSGDS2 for use in winch and crane applications	32
Holding the loadMOPS	33
Dimensions of all valve block attachments	34
Project planning notes	35
Safety instructions	36

2 **A4VSG Series 10 and 3x** | Axial piston units with DS2 secondary closed loop control Type code

Type code

01	1 1	03	04	05	06		07	08 		09	, 	10	11	12	1	13 	14	1
	A4VS	G				/			-					10	<u> </u>			
lydr	aulic fluid								40	71	125	180	250	355	500	750	1000	
01	Mineral oil	and HF	D hydrau	ilic fluid	s (no cod	e)			•	•	•	•	•	•	•	•	•	
	HFA, HFB, a	and HFC	C hydrau	lic fluids			_		•	•	•	•	•	•	•	-	-	E
xia	l piston unit																	
02	Variable sw	vashplat	e design	, nomina	al pressu	re 315 b	ar, maxin	num press	sure 40	0 bar								A4V
Dper	ating mode																	
03	Pump / mo	tor, clos	sed circu	iit														G
Size	(NG)																	
04	Geometric	displace	ement, s	ee table	of values	s on pag	e 7		40	71	125	180	250	355	500	750	1000	
ont	rol device								·									
05	Secondary	speed o	control	v	vith mour	nted con	trol valve	•	•	•	•	•	•	•	•	•	•	DS2
		opeed		_	vith mour				0	0	0	0	0	0	0	0	0	DS
				_	vithout va				0	0	0	0	0	0	0	0	0	DS
\ ddi	tional valve	(coo tak	alo "Elou	diractiv		ao 8)						I					· · · · ·	
06	Load holdi				lockwise	-	direction								-			
00	1363	ig runet		10 0		SWIVEL	ancetion											LF
				0	Counter-c	lockwise	e swivel c	irection										LI
	Load holdin	ng funct	ion with	LS 1363	3													L
	not piped u																	
	Without loa	ad holdi	ng funct	ion			-											0
Serie	5								40	71	125	180	250	355	500	750	1000	
07	Series 1, in	dex 0							•	•	-	-	-	-	-	-	-	10
	Series 3, in	dex 0							-	-	•	•	•	•		•	•	30
	Series 3, in	dex 3; 6	efficiency	-optimiz	ed rotary	group			-	-	-	-	0	0	•	0	-	33
Dire	ction of rota	tion																
08	Viewed on	drive sh	aft				alternat	ing										W
Seali	ng material ¹)							40	71	125	180	250	355	500	750	1000	
09	FKM (fluoro		ner) acco	ording to	SO 162	29			•	•	•	•	•	•	•	•	•	V
Drive	e shaft								40	71	125	180	250	355	500	750	1000	
10	Parallel key	ved shaf	t DIN 68	85					•	•	•	•	•	•	•	•	•	Р
-	Splined sha								•	•	•	•	•	•	•	•	•	z
1	nting flange According		019-2 m	etric			4-hole		40 •	71 •	125 •	180	250 •	355 •	500 _	750	1000	В
		10 10 0 0	019-7 UI				8-hole		-	-	-	-	-	-	•			H
Mou 11							0-11016		1 -	-	I –	-		ı –	•	•	•	п
11																		
11	king port							<u> </u>									· · · ·	10

1) For more information about sealing material, see data sheet 92100

Axial piston units with DS2 secondary closed loop control | **A4VSG Series 10 and 3x** Type code 3

	A4VS	G				1				-				10			
	1					. ,										ļ	
	i gh drive (fo			ons and	dimensio	ons, see	data she	et 922	100)								
	Flange ISO (metric)	3019-1		Hub fo	or spline	d shaft ¹⁾											
	Diameter	Δtt	achment	Diame	ter			40	71	125	180	250	355	500	750	1000	
	Without thr							•	•		•		•	•		•	N
	125, 4-hole							•	•	•	•	•	0	0	0	0	K
	140, 4-hole			40x2x	18x9g			-	•	•	•	•	•	•	0	•	K
	160, -4-hole	<u> </u>		50x2x	24x9g			-	-	•	•	•	•	•	0	•	K
	224, 4-hole			60x2x	28x9g			-	-	-	-	•	•	•	•	•	K3
	224, 4 hole 0022200g 224, 4-hole 70x3x22x9g							-	-	-	-	-	•	•	0	0	К7
	315, 8-hole	600		80x3x	25x9g			-	-	-	-	-	-	•	0	0	K4
	400, 8-hole	00		90x3x	28x9g			-	-	-	-	-	-	-	•	•	K7
	400, 8-hole			100x3	x32x9g			-	-	-	-	-	-	-	-	•	K
	With mounted incremental encoder 1000 pulses/rev.						ev.	•	•	•	•	•	•	•	•	•	т0:
	Prepared for mounted incremental encoder, through drive plugged with cover						•	٠	•	•	•	•	•	•	•	T10	
	Special tachometer mounting					0	0	0	0	0	0	0	0	0	T9		
	Prepared for plugged wit			pecial tac	hometer	,		0	ο	0	0	0	0	0	0	0	тс
	Prepared for plugged cov		gh drive	, with pre	essure-pi	roof		•	•	•	•	•	•	•	•	•	KS
/e	S						•				•	•					
	Without val	ve bloc	k					•	•	•	•	•	•	•	•	•	0
	Mounted el	ectrical	ly releas	able che	ck valve	RVE		•	•	•	•	•	•	•	•	•	1
	Mounted electrically releasable check valve RVE Electrically releasable shut-off block for combination with load holding function LS 1363, type code L, without overload protection for deactivated isolating valve.						•	•	•	•	•	•	•	•	•	2'	
	Electrically releasable shut-off block for combination with load holding function LS 1363, type code L, and block for manual overload protection MOPS						•	•	•	•	•	•	•	•	•	3	
a	ation																
	Without filt	er						•	٠	•	•	•	•	•	•	•	N
	Intermediat	e plate	filter (se	ee data sl	neet 920	76)		•	•	•	•	•	•	•	•	•	z

1) Hub for splined shaft according to ANSI B92.1a

relevant technical data when placing your order.

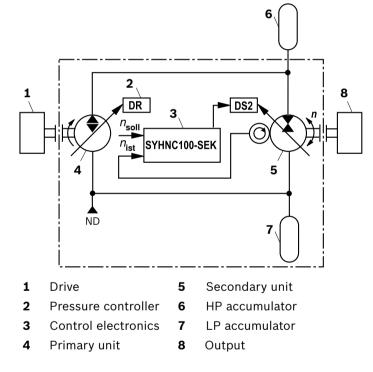
(See also data sheet 92100)

²⁾ Combination with swivel direction (position 06) L or R not possible.

³⁾ Preferred types

⁴⁾ For more information see "A4VSG...DS2 for use in winch and crane applications" on page 32

Function

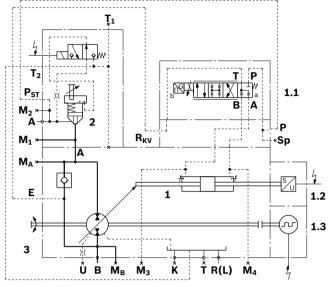

Secondary control is an energy-saving drive concept with high dynamics for the installation of closed loop rotational speed, position, or torque control with energy recovery. The secondary controlled hydrostatic axial piston units operate on a supply network with constant high pressure and low pressure.

The power takeoff or return to the supply network is throttle-free and based on demand whereby the displacement of the axial piston units adapts to the respective load case.

Any number of units operating as a motor or pump can thereby be arranged in parallel. Four-quadrant operation is possible, whereby the units for reversing the speed or torque are swiveled over "zero". This also reverses the direction of the flow. An energy accumulator can be installed in the high and low pressure system between the primary and secondary units if necessary.

The flow peaks are covered by the accumulator. It is also used to store the recovered energy in the hydraulic network from the secondary unit if no other consumers are present. Together with the pressure-controlled primary unit and the operating conditions of the secondary unit, the charge state of the accumulator and its pre-charge pressure determine the constant high pressure of the system.

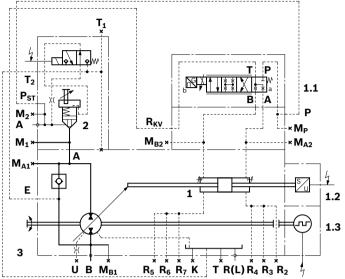
The specific properties of the secondary control, such as the reduction in technical equipment in the primary area, the possibilities of energy recovery and the storage of braking energy, and the virtually load-independent rotational speed and positioning accuracy open up a wide field of applications.



Associated electronics (see also page 13)

- ► Digital controller assembly group SYHNC100-SEK...3x
- Amplifier card VT-VRRA 1-527-20/V0 (for sizes 40 and 71)
- Amplifier card VT-VRRA 1-537-20/V0 (for sizes 125 to 1000)
- Card holder VT3002-1-2x/32F

Circuit diagram DS.. Sizes 40 to 355

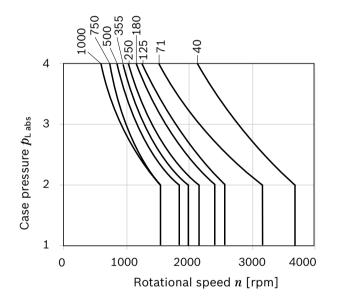


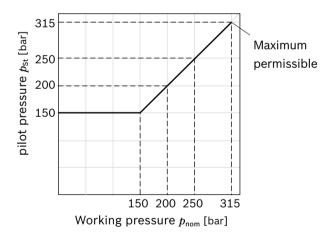
Seco	ndary unit components
1	Axial piston unit A4VSG, sizes 40 to 355
1.1	4-way control valve (see data sheet 29026)
	NG (A4VS) Type
	40, 71 4WRPH6 C3 B24L -2X/G24KO/M-750
	125 to 355 4WRPH10 C3 B50L -2X/G24KO/M-750
1.2	Swivel angle sensor AWXF (see page 11)
1.3	Incremental encoder GEL 293 (see page 10)
2	Electrically releasable check valve RVE
	Ordering code: Order item 14, type code 1
	(see page 12)
3	Anti-cavitation valve, order separately (see page 12)
Ports	
A	Working pressure (high-pressure series)
в	Low pressure (high-pressure series)
M _A ; N	
Мв	Measuring low pressure
M ₂	Measuring working pressure
M ₃ ; N	Measuring control pressure (from NG125)
SP	External control pressure
т	Fluid drain
T ₁ ; T ₂	Leakage/air bleeding
К	Flushing
R(L)	Control fluid return flow
U	Bearing flushing
P _{st}	Pilot pressure
Е	Boost pressure
Rĸv	Control fluid return flow
Р	Control pressure

Circuit diagram DS.. Sizes 500 to 1000

	UI	$B M_{B1} R_5 R_6 R_7 K T R(L) R_4 R_3 R_2$
Seco	ndary un	it components
1	Axial pisto	on unit A4VSG, sizes 500 to 1000
1.1	4-way con	trol valve (see data sheet 29026)
	NG (A4VS) Type
	500 to 10	00 4WRPH10 C3 B50L -2X/G24KO/M-750
1.2	Swivel and	gle sensor AWXF (see page 11)
1.2		al encoder GEL 293 (see page 11)
		y releasable check valve RVE
2		code: Order item 14, type code 1
	(see page	
3	Anti-cavita	ation valve, order separately (see page 12)
Ports		
A 		Working pressure (high-pressure series)
В		Low pressure (high-pressure series)
	M ₁ ; M ₂	Measuring working pressure
M _{B1}		Measuring low pressure
M _{A2}		Measuring control pressure
M B2		Measuring control pressure
M _P		External control pressure
Т		Fluid drain
T ₁ ; T ₂		Leakage/air bleeding
К		Flushing
R(L)		Control fluid return flow
U		Bearing flushing
P _{ST}		Pilot pressure
E		Boost pressure
R _{κν}		Control fluid return flow
Р		Control pressure

Air bleeding the control


R2 - R7


Working pressure range

Pressure at working port A		Definition
Nominal pressure ¹⁾ $p_{\sf nom}$	315 bar	The nominal pressure corresponds to the maximum design pressure.
Maximum pressure ²⁾ p_{max}	400 bar	The maximum pressure corresponds to the maximum working pressure
Single operating period	1 s	within the single operating period. The sum of the single operating
Total operating period	300 h	periods must not exceed the total operating period.
Minimum pressure (high-pressure side) 16 bar	see also data sheet 92100	Minimum pressure at the high-pressure side (A or B) which is required to prevent damage to the axial piston unit.
Minimum pressure (low-pressure side) 16 bar	-	Minimum pressure at the low-pressure side (A or B) which is required to prevent damage to the axial piston unit.
Boost pressure		
Maximum boost pressure p_{Emax}	30 bar	
Recommended boost pressure $p_{ m S\ max}$	16 bar	
Auxiliary pump inlet pressure Suction pressure $p_{ m S\ min}$ ($ u$ =10 to 300 mm²)	≥ 0.7 bar absolute	
Pilot pressure		
Maximum permissible pilot pressure $^{1)}$ $p_{ m Stmax}$	315 bar	
Minimum required pilot pressure $p_{ m Stmax}$		Working pressure or 150 bar (see diagram)
Case pressure at port T, R(L), K ₂ , K ₃		
Maximum static pressure $p_{ m Labsmax}$	4 bar	A drain line to the reservoir is required.

▼ Permissible shaft seal pressure load

Required pilot pressure depending on the working pressure

Notice

The table data are reference values (valid for mineral oil). Specified pressures according to DIN 24312. Please contact us for special operating conditions (documentation@boschrexroth.de).

1) Due to the permissible data of the control valve and other system components

2) Please contact us

Technical data

For a highly dynamic accurate drive system, a backlash-free minimum mass moment of inertia directly on the shaft of the secondary unit is required. Information on this can be found in the row "Required minimum total moment of inertia". A higher moment of inertia improves the control behavior.

Size		NG		40	71	125	180	250	355	500	750	1000
	Displacement, geometric, per revolution			40	71	125	180	250	355	500	750	1000
Maximum rotational speed ¹⁾	at 1.0 V _{g max} ; p _E ≥ 15 bar	$n_{\sf nom}$	rpm	3700	3200	2600	2400	2000	2000	1800	1600	1600
	at 0.8 V _{g max} ; p _E ≥ 15 bar	n_{\max}	rpm	4900	4100	3400	2900	2600	2200	2000	1800	1600
Power	at $n_{ m nom},V_{ m gmax}$ and $\varDelta p$ = 300 bar	Р	kW	74	114	163	216	250	355	450	600	800
Torque	at $V_{g \max}$ and Δp = 300 bar	Т	Nm	191	339	597	859	1194	1695	2387	3581	4775
Control volume	from 0 to $V_{g max}$	V_{Smax}	cm ³	5.9	10.5	26.0	26.0	50.9	50.9	63.8	105	129
Actuating time	from 0 to $V_{g max}$	ts	S	0.030	0.040	0.050	0.050	0.060	0.060	0.080	0.090	0.10
Moment of	inertia		kgm ²	0.0049	0.0121	0.0300	0.055	0.0959	0.19	0.3325	0.66	1.20
•	Required minimum total moment of inertia		kgm²	0.25	0.06	0.15	0.27	0.48	0.95	1.66	3.33	6
0 .	Weight (with RVE and m incremental encoder) approx.		kg	67	83	126	140	225	248	381	523	630

Deter	rmining	the characteristics for operation as a pump	Determining the characteristics for operation as a motor							
Flow	·	$q_{\rm v} = \frac{V_{\rm g} \times n \times \eta_{\rm v}}{1000} $ [l/min]	Displacement	$q_{\rm v} = \frac{V_{\rm g} \times n}{1000 \times \eta_{\rm v}} \qquad [l/{\rm min}]$						
Torqu	ie	$T = \frac{V_{g} \times \Delta p}{20 \times \pi \times} $ [Nm] η_{hm}	Torque	$T = \frac{V_{g} \times \Delta p \times}{\frac{\eta_{hm}}{20 \times \pi}}$ [Nm]						
Powe	r	$P = \frac{2 \pi \times T \times n}{60000} = \frac{q_v \times \Delta p}{600 \times \eta_t} [kW]$	Output power	$P = \frac{2 \pi \times T \times n}{60000} = \frac{q_{v} \times \Delta p \times \eta_{t}}{600} [kW]$						
Key			Key							
V_{g}	=	Displacement per revolution [cm ³]	<i>V</i> g =	Displacement per revolution [cm ³]						
Δp	=	Differential pressure [bar]	Δp =	Differential pressure [bar]						
n	=	Rotational speed [rpm]	<i>n</i> =	Rotational speed [rpm]						
η_v	=	Volumetric efficiency	η, =	Volumetric efficiency						
$\eta_{ m hm}$	=	Hydraulic-mechanical efficiency	$\eta_{ m hm}$ =	Hydraulic-mechanical efficiency						
$\eta_{ m t}$	=	Total efficiency ($\eta_{ extsf{t}} = \eta_{ extsf{v}} imes \eta_{ extsf{hm}}$)	$\eta_{ m t}$ =	Total efficiency ($\eta_{ m t}$ = $\eta_{ m v}$ × $\eta_{ m hm}$)						

Notice

- Theoretical values, without efficiencies and tolerances; values rounded
- Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. We recommend testing the loads by means of experiment or calculation / simulation and comparison with the permissible values.
- Special requirements apply in the case of belt drives.
 Please contact us.

1) The values are applicable:

– for the optimum viscosity range from ν_{opt} = 36 to 16 mm²/s

- with hydraulic fluid based on mineral oils

8 **A4VSG Series 10 and 3x** | Axial piston units with DS2 secondary closed loop control Permissible radial and axial loading of the drive shaft

Permissible radial and axial loading of the drive shaft

Size		NG		41	71	125	180	250	355	500	750	1000
Maximum radial force at a/2		$F_{q \max}$	N	1200	1700	2500	3100	4000	4400	5000	6000	10000
Maximum axial force at case pressure p_{\max} 1 bar absolute	<u>—</u> 1	$\pm F_{ax max}$	N	1000	1400	1900	2250	3000	3600	4000	5450	8000
at case pressure	F_{ax}	+ F _{ax max}	Ν	620	810	1050	1400	1850	2100	2500	3150	4700
p_{\max} 4 bar absolute		$-F_{ax max}$	Ν	1380	1950	2750	3050	4150	5050	5500	7800	11000

Notice

The specified values are maximum values and do not apply to continuous operation. The drive with radial loading (pinion, V-belt) is not permissible!

Flow direction

Size 40 to 355	Swivel direction ¹⁾	Direction of	rotation ²⁾	Pressure in	Operating mode	Control va	lve	Sign
		clockwise	counter- clockwise				4WRPH	Swivel angle
						Part of control	Flow direction	Actual value
	clockwise	B to A		A	Pump		P to A B to T	positive
	clockwise		A to B	A	Motor		P to A B to T	positive
counter- clockwise	counter- clockwise		B to A	Α	Pump	X	P to B A to T	negative
	counter- clockwise	A to B		A	Motor	X	P to B A to T	negative
Size 500 to 1000	Swivel direction ¹⁾	Direction of	rotation ²⁾	Pressure in	Operating mode	Control va	lve	Sign
		clockwise	counter- clockwise				4WRPH	Swivel angle
						Part of control	Flow direction	Actual value
						001111-01		
	clockwise	B to A		Α	Pump		P to B A to T	negative
	clockwise clockwise	B to A	A to B	A A	Pump Motor			negative negative
clockwise		B to A	A to B B to A				A to T P to B	

1) Vertical view of the optical swivel angle indicator

2) Viewed on drive shaft

DS2R speed control

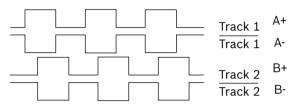
Speed control is when the DS2 control device changes the swivel angle and thus the

displacement of the axial piston unit at a constant working pressure until the torque required to maintain the specified speed is built up.

In a supply network with constant working pressure, the torque is proportional to the swivel angle or the displacement of the axial piston unit. The displacement is sensed by an inductive position transducer, the speed by an incremental encoder.

A control valve controls the displacement. When higher requirements are placed on the dynamics of the drive system, the control valve can be replaced with a servo valve. When the emergency shut-down is used, the electrically releasable check valve RVE (hydraulic connector) at the pressure port is brought to the locked position. This then prevents energy from being supplied to the secondary unit; only regenerative braking with energy recovery to the hydraulic network is possible.

The following pages describe:


- The incremental encoder GEL 293 for sensing the speed
- The position transducer AWXF for sensing the swivel angle
- The electrically releasable RVE A4VS check valve
- ► The digital controller assembly group SYHNC100-SEK Information on pilot valve (DS2R) 4WRPH6/10..-750 can be found in data sheet 29026.

Incremental encoder GEL 293

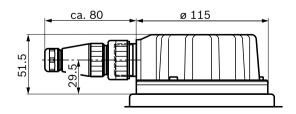
Technical data (type code position 12 "T03")								
Resolution								
Т03	1000 increments/revolution							
Type of protection according	IP 66 with installed and							
to EN 60529	locked plug-in connector							
Power consumption: R_{L} = ∞ ; U_{B} = 5 V	≤1.0 W							
Ambient temperature	-20 °C to +80 °C							

Signal pattern T

Supply voltage $U_{\rm S}$ = 5 V ± 5%; signal voltage $U_{\rm Si}$ = 5 V Clockwise-rotating signal image viewed on drive shaft



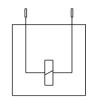
Electrical connection

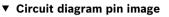

Maximum cable lengths

Between the incremental encoder and the downstream electronics: earth the cable shield on one side of the receiver. The data specified are reference values and refer to the cable type LiYCY 6 (10) x 0.25 mm².

f	[kHz]	5	10	20	50	100	200
l_{\max}	[m]	200	200	200	200	145	72

▼ Dimensions (in mm)

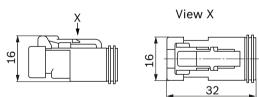

The plug-in connector is included in the scope of delivery. It is possible to use other speed sensing systems. In this case, please contact us (documentation@boschrexroth.de).


Connector for solenoids

DEUTSCH DT04-2P-EP04

Molded, 2-pin, without bidirectional suppressor diode The mounted mating connector has the following type of protection:

- IP67 (DIN/EN 60529)
- Switching symbol



Plug-in connector directional valve with device connector K40 (DEUTSCH connector)

Code 2P DT06 K40	Voltage DC/AC U	Current I _{max}	Color	Wire cross section [mm ²]	Material number
AWG14	1032 V	5 A	gray	AWG14-16 1.32.08	R900733451
AWG16	1032 V	5 A	gray	AWG16-18 0.831.3	R901017847

▼ Dimensions (in mm)

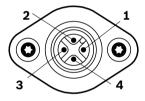
The mating connector is not included in the scope of delivery and must be ordered separately.

The	foll	lowing	are	req	uired:	

The following are required.	
Load holding function LS1363	1 connector
Electrically releasable check valve	1 connector
Electrically releasable shut-off block	1 connector
Manual overload protection MOPS	2 connectors

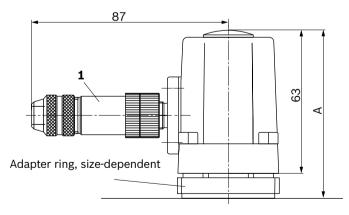
Accessories (not included in the scope of delivery)

Crimping tool	Type HDT-4800, Deutsch


Notice

Connector with 10 m molded cable, GL classification, type of protection IP67, please contact us. Further information in RE 08006 "Plug-in connectors and wiring harnesses for valves and sensors in hydraulic systems".

Swivel angle indicator AWXF


Technical data			
Measuring			Differential transformer
system			
Control stroke		mm	±4.5
Linearity		%	≤1.0
tolerance			
Carrier		kHz	5
frequency			
Coil resistance	Primary coil	Ω	120
(at 20 °C)	Each secondary coil	Ω	280
Electrical			Plug-in connection
connection			M12 × 1, 4-pin
Plug-in connecti	on type of		IP 67 with installed and
protection acco	rding to EN 60529		locked plug-in connector
Ambient temper	ature		-20 °C to +80 °C

Electrical connection

Dimensions (in mm)

 $\label{eq:logistical_state} 1 \ \ \mbox{Plug-in connector is included in the scope of delivery.}$

▼ Table of values dimension A

Size								
40	71	125	180	250	355	500	750	1000
86	90	96	86	81	81	81	81	81

Electrically releasable check valve RVE

(Order item 13, type code 1)

Technical data				
Electric (see also directional seat valve M-3SED6, data sheet 22049)				
DC voltage	V	24		
Power consumption	W	30		
Duty cycle		Continuous operation		
Type of protection according to EN 60529		IP 67 with installed and locked plug-in connector		

Hydraulic	Iydraulic (see also built-in valves type LC, data sheet 21010)					
Size	Logic element	installed in the housing	maximum flow $q_{ m vmax}$ in l/min at a pressure drop of 5 bar			
40	LC16B40D-7X/	AGEV4-05701-AB/46	200			
71	LC25B40D-7X/	AGEV4-05702-AB/46	400			
125	LC32B40D-7X/	AGEV4-05703-AB/46	700			
180	LC32B40D-7X/	AGEV4-05703-AB/46	700			
250	LC32B40D-7X/	AGEV4-05704-AB/46	700			
355	LC32B40D-7X/	AGEV4-05704-AB/46	700			
500	LC40B40D-7X/	AGEV4-05705-AB/46	1200			
750	LC40B40D-7X/	AGEV4-05705-AB/46	1200			
1000	LC40B40D-7X/	AGEV4-05705-AB/46	1200			

Anti-cavitation valve S...A

(Without order item, selection according to the following table)

Ordering code for A4	VSG
Size	Anti-cavitation valve
40	S10A1.0
71	S15A1.0
125	S20A1.0
180	S20A1.0
250	S25A1.0
355	S25A1.0
500	S30A1.0
750	S30A1.0
1000	S30A1.0

Notice

► For details of the anti-cavitation valve, see data sheet 20375.

Axial piston units with DS2 secondary closed loop control | **A4VSG Series 10 and 3x** 13 Digital controller assembly group SYHNC100-SEK...-3x (Without order item; selection according to data sheet 30162)

Digital controller assembly group SYHNC100-SEK...-3x

(Without order item; selection according to data sheet 30162)

Features

The digital controller assembly group SYHNC100-SEK-...-3x is suitable for the speed and torque control, closed loop torque control and open loop torque control of secondary controlled axial piston units type A4VS..DS2.

It contains interfaces to measure the swivel angle position of single or tandem units as well as for speed return with incremental encoders. The software contains control and monitoring functions specifically designed for secondary control.

Additional features:

- Up to 2 modules for evaluating the signals from up to 4 LVDT swivel angle sensors
- Up to 2 incremental encoder inputs with monitoring function for speed sensing
- Up to 8 analog inputs (voltage or current) for the setpoint specification
- Up to 6 analog outputs for controlling downstream valve amplifiers
- Digital inputs and outputs for communication with a higher-level control
- Profibus DP or CANopen for communication with a higher-level control
- Layout of the master/slave applications via internal CAN interface
- ▶ Installation on a 35 mm top hat rail

Software functionality

The software basically contains the control types: speed control, closed loop torque control, and open loop torque control.

You can switch between the closed loop control types during operation without any hitches.

The configuration, parameterization and diagnosis of the SYHNC100-SEK-...-3x is done using the PC program WINPED. Only the "WIN-PED 6.6" version is used.

This can be downloaded from www.boschrexroth.com/hnc100 free of charge.

System-specific software extensions can be created on request.

Monitoring functions

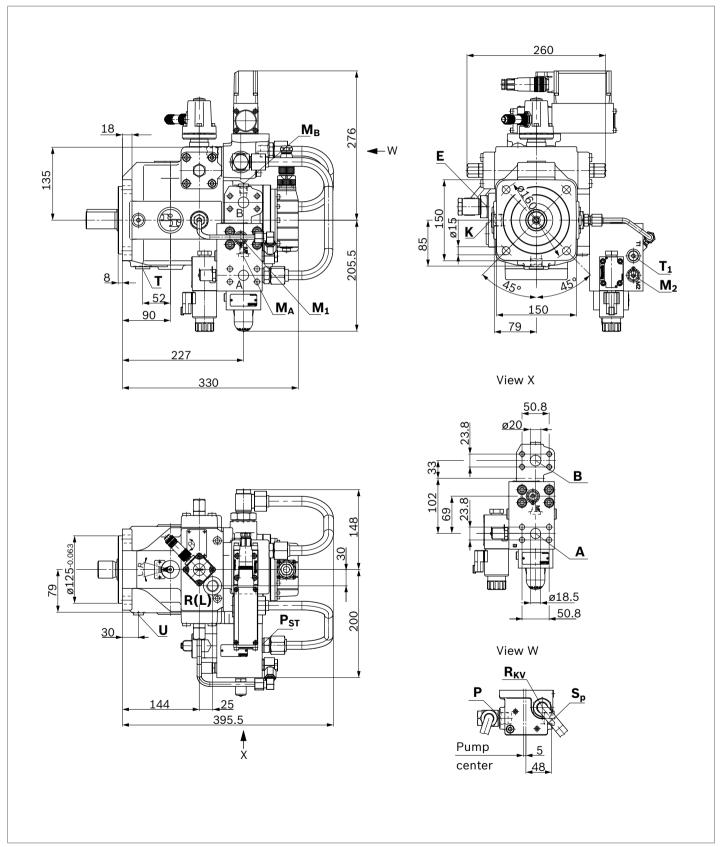
- Cable break monitoring for incremental and SSI encoders
- Cable break monitoring for swivel angle sensor
- Acceleration too high
- Overspeed (max. rotational speed)
- Speed difference target / actual
- Swivel angle difference target / actual

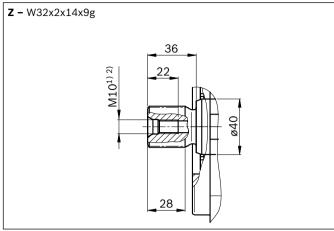
Further information

Data sheet 30162 "Digital controller assembly group HNC100-SEK for the secondary control of axial piston units, type SYHNC100-SEK

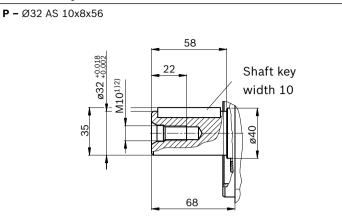
Notice about the system structure

The secondary unit with ordering code 04 = "DS2R" (with control valve) additionally requires the following, which are not included in the scope of delivery:


- Digital controller assembly group SYHNC100-SEK-...-3x according to data sheet 30162
- Amplifier VT-VRRA 1-527-20/V0 according to data sheet 30041 (for A4VS sizes 40 and 71) or


amplifier VT-VRRA 1-537-20/V0 according to data sheet 30041 (for A4VS sizes 125 to 1000)

 Card holder VT3002-1-2X/32F, material number 1834486001, according to data sheet 29928


Dimensions, size 40

DS2 – secondary controlled unit with RVE check valve

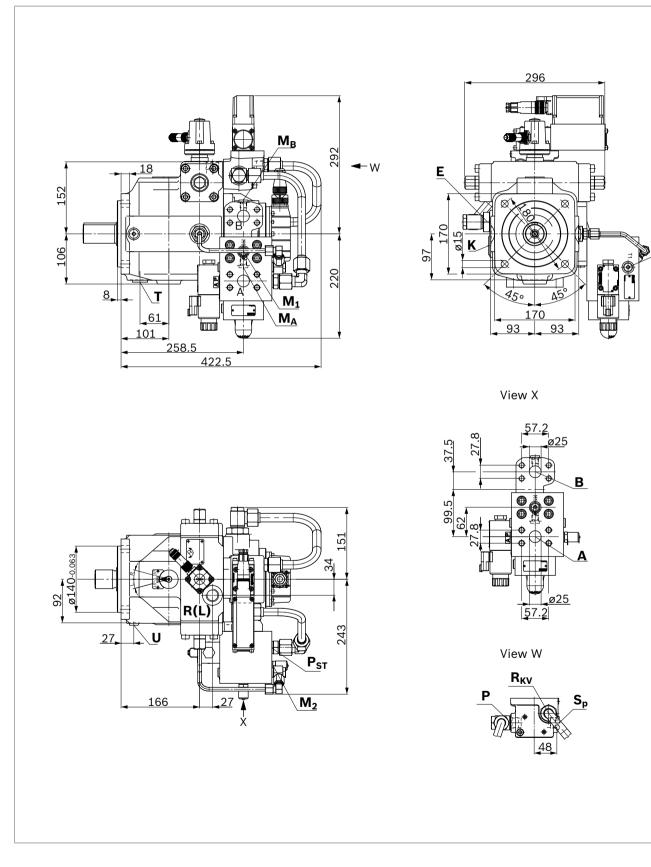
▼ Parallel keyed shaft DIN 6885

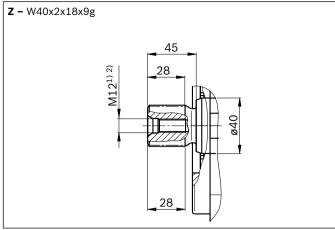
Ports		Standard	Size ¹⁾	$p_{\max abs}$ [bar] $^{2)}$	State ⁶⁾
А, В	Working port (high-pressure series)	SAE J518 ³⁾	3/4 in	400	0
	Fastening thread	DIN 13	M10 × 1.5; 17 deep		
M _A ; M _B	Measuring working pressure	DIN 3852	M14 × 1.5; 12 deep	400	Х
M ₁ ; M ₂	Measuring working pressure	DIN 3852	G 1/4 in; 12 deep	400	Х
S _P	Control pressure	DIN 3852	M22 × 1.5; 14 deep	315	0
т	Fluid drain	DIN 3852	M22 × 1.5; 14 deep	4	Х
T ₁ ; T ₂	Leakage/air bleeding	DIN 3852	G 1/4 in; 12 deep	4	Х
К	Flushing	DIN 38524)	M22 × 1.5; 14 deep	4	O ⁵⁾
R(L)	Control fluid return flow	DIN 38524)	M22 × 1.5; 14 deep	4	O ⁵⁾
U	Bearing flushing	DIN 3852	M14 × 1.5; 12 deep	7	Х
P _{ST}	Pilot pressure	ISO 228	G 1/2; 15 deep	315	piped up
E	Boost pressure	DIN 3852 ⁴⁾	M22 × 1.5; 20 deep	50	0
R _{KV}	Control fluid return flow	DIN 38524)	M22 × 1.5; 14 deep	100	piped up
Р	Control pressure	DIN 38524)	M22 × 1.5; 14 deep	315	piped up

1) Observe the instructions in the instruction manual concerning the maximum tightening torques.

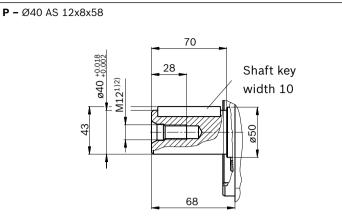
2) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

3) Metric fastening thread is a deviation from standard.


- 5) Depending on the installation position, **K** or **R**(**L**) must be connected (also see installation instructions in data sheet 92100).
- 6) O = Must be connected (plugged when delivered)
 X = Plugged (in normal operation)

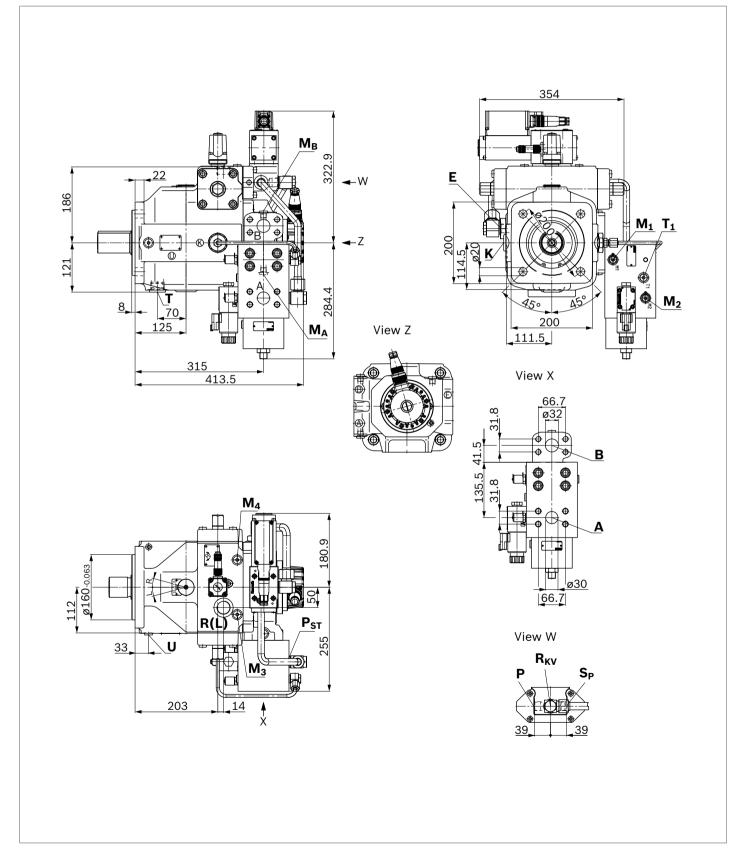

⁴⁾ The countersink can be deeper than as specified in the standard.

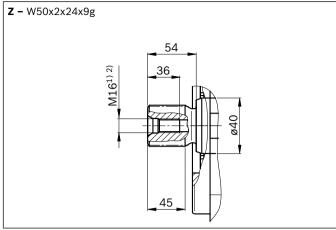
T1


Dimensions, size 71

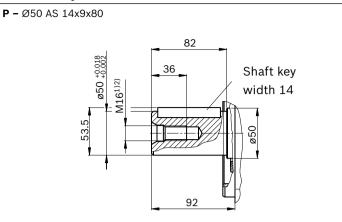
DS2 – secondary controlled unit with RVE check valve

▼ Parallel keyed shaft DIN 6885


Ports		Standard	Size ¹⁾	$p_{\max abs}$ [bar] ²⁾	State ⁶⁾
А, В	Working port (high-pressure series)	SAE J518 ³⁾	1 in	400	0
	Fastening thread	DIN 13	M12 × 1.75; 17 deep		
M _A ; M _B	Measuring working pressure	DIN 3852	M14 × 1.5; 12 deep	400	Х
M ₁ ; M ₂	Measuring working pressure	DIN 3852	G 1/4 in; 12 deep	400	Х
SP	Control pressure	DIN 3852	M22 × 1.5; 14 deep	315	0
т	Fluid drain	DIN 3852	M27 × 2; 12 deep	4	Х
T ₁ ; T ₂	Leakage/air bleeding	DIN 3852	G 1/4 in; 12 deep	4	Х
К	Flushing	DIN 3852 ⁴⁾	M27 × 2; 14 deep	4	O ⁵⁾
R(L)	Control fluid return flow	DIN 3852 ⁴⁾	M27 × 2; 16 deep	4	O ⁵⁾
U	Bearing flushing	DIN 3852	M14 × 1.5; 12 deep	7	Х
P _{ST}	Pilot pressure	ISO 228	G 1/2; 15 deep	315	piped up
E	Boost pressure	DIN 3852 ⁴⁾	M22 × 1.5; 20 deep	50	0
R _{KV}	Control fluid return flow	DIN 38524)	M22 × 1.5; 14 deep	100	piped up
Р	Control pressure	DIN 38524)	M22 × 1.5; 14 deep	315	piped up


1) Observe the instructions in the instruction manual concerning the maximum tightening torques.

- 2) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.
- 3) Metric fastening thread is a deviation from standard.
- 4) The countersink can be deeper than as specified in the standard.
- 5) Depending on the installation position, K or R(L) must be connected (also see installation instructions in data sheet 92100).
- 6) O = Must be connected (plugged when delivered)
 X = Plugged (in normal operation)


Dimensions, size 125

DS2 - secondary controlled unit with RVE check valve

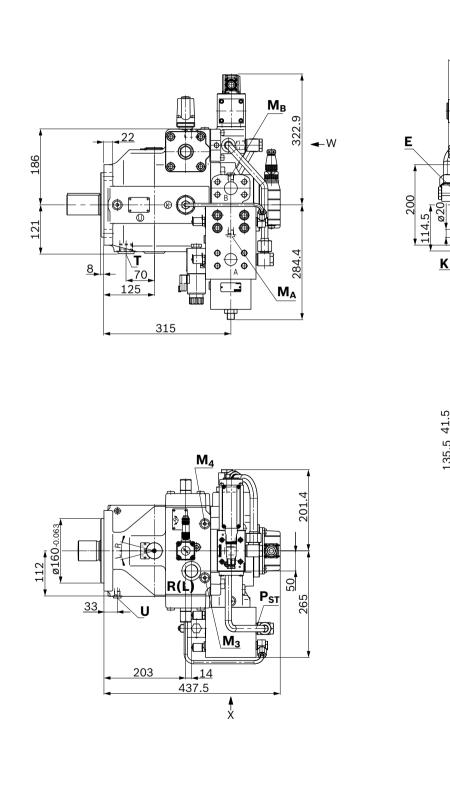
▼ Parallel keyed shaft DIN 6885

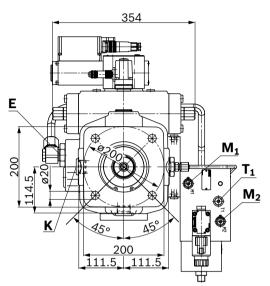
Ports		Standard	Size ¹⁾	$p_{\max abs}$ [bar] ²⁾	State ⁶⁾
А, В	Working port (high-pressure series)	SAE J518 ³⁾	1 1/4 in	400	0
	Fastening thread	DIN 13	M14 × 2; 19 deep		
$M_A; M_B$	Measuring working pressure	DIN 3852	M14 × 1.5; 12 deep	400	Х
M ₁ ; M ₂	Measuring working pressure	DIN 3852	M14 × 1.5; 12 deep	400	Х
M ₃ ; M ₄	Measuring working pressure	DIN 3852	M14 × 1.5; 12 deep	400	Х
SP	Control pressure	DIN 3852	M22 × 1.5; 14 deep	315	0
т	Fluid drain	DIN 3852	M33 × 2; 18 deep	4	Х
T ₁ ; T ₂	Leakage/air bleeding	DIN 3852	G 1/4 in; 12 deep	4	Х
К	Flushing	DIN 38524)	M33 × 2; 18 deep	4	O ⁵⁾
R(L)	Control fluid return flow	DIN 38524)	M33 × 2; 18 deep	4	O ⁵⁾
U	Bearing flushing	DIN 3852	M14 × 1.5; 12 deep	7	Х
Pst	Pilot pressure	ISO 228	G 1/2; 15 deep	315	piped up
E	Boost pressure	DIN 38524)	M22 × 1.5; 14 deep	50	0
R _{KV}	Control fluid return flow	DIN 38524)	M22 × 1.5; 14 deep	100	piped up
Р	Control pressure	DIN 3852 ⁴⁾	M22 × 1.5; 14 deep	315	piped up

1) Observe the instructions in the instruction manual concerning the maximum tightening torques.

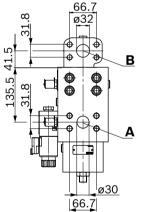
2) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

3) Metric fastening thread is a deviation from standard.

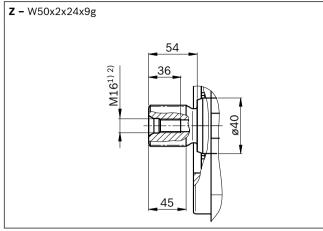

- 5) Depending on the installation position, **K** or **R**(**L**) must be connected (also see installation instructions in data sheet 92100).
- 6) O = Must be connected (plugged when delivered)
 X = Plugged (in normal operation)


⁴⁾ The countersink can be deeper than as specified in the standard.

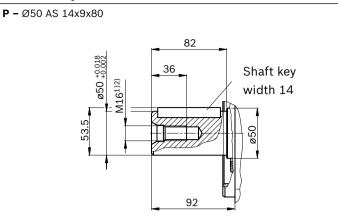
Dimensions, size 180


DS2 - secondary controlled unit with RVE check valve

Alternating direction of rotation



View X



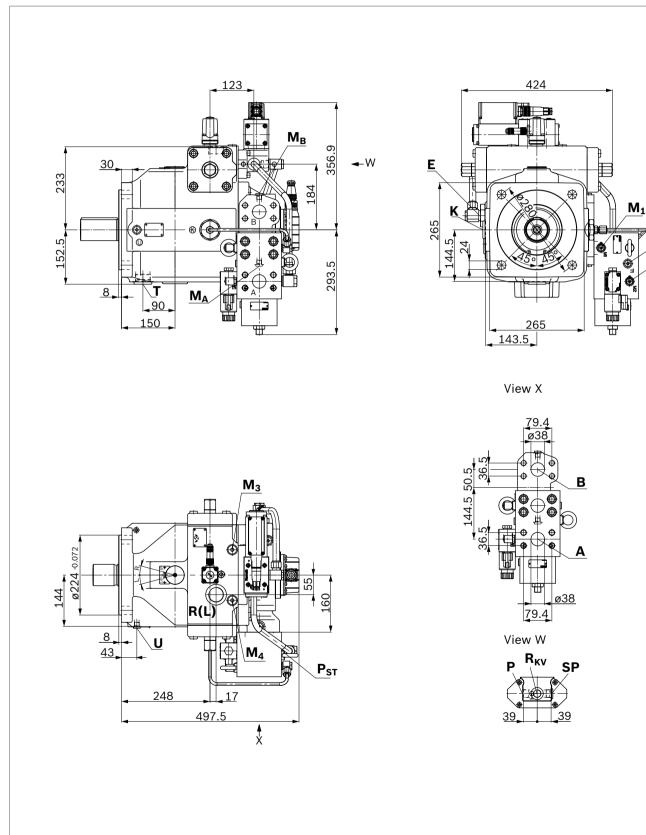
View W

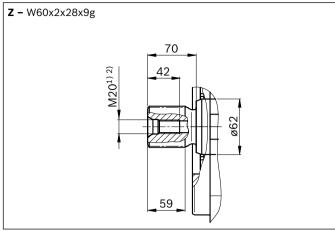
Parallel keyed shaft DIN 6885

Ports		Standard	Size ¹⁾	$p_{ m max\ abs}$ [bar] $^{2)}$	State ⁶⁾
А, В	Working port (high-pressure series)	SAE J518 ³⁾	1 1/4 in	400	0
	Fastening thread	DIN 13	M14 × 2; 19 deep		
M _A ; M _B	Measuring working pressure	DIN 3852	M14 × 1.5; 12 deep	400	Х
M ₁ ; M ₂	Measuring working pressure	DIN 3852	G 1/4 in; 12 deep	400	Х
S _P	Control pressure	DIN 3852	M22 × 1.5; 14 deep	315	0
т	Fluid drain	DIN 3852	M33 × 2; 18 deep	4	Х
T ₁ ; T ₂	Leakage/air bleeding	DIN 3852	G 1/4 in; 12 deep	4	Х
К	Flushing	DIN 3852 ⁴⁾	M33 × 2; 18 deep	4	O ⁵⁾
R(L)	Control fluid return flow	DIN 3852 ⁴⁾	M33 × 2; 18 deep	4	O ⁵⁾
U	Bearing flushing	DIN 3852	M14 × 1.5; 12 deep	7	Х
P _{ST}	Pilot pressure	ISO 228	G 1/2; 15 deep	315	piped up
E	Boost pressure	DIN 38524)	M22 × 1.5; 14 deep	50	0
R _{KV}	Control fluid return flow	DIN 3852 ⁴⁾	M22 × 1.5; 14 deep	100	piped up
Р	Control pressure	DIN 38524)	M22 × 1.5; 14 deep	315	piped up

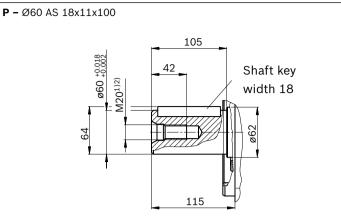
1) Observe the instructions in the instruction manual concerning the maximum tightening torques.

2) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.


- 3) Metric fastening thread is a deviation from standard.
- 4) The countersink can be deeper than as specified in the standard.
- 5) Depending on the installation position, K or R(L) must be connected (also see installation instructions in data sheet 92100).
- 6) O = Must be connected (plugged when delivered)X = Plugged (in normal operation)


T<u>1</u>

 M_2


Dimensions, size 250

DS2 - secondary controlled unit with RVE check valve

▼ Parallel keyed shaft DIN 6885

Ports		Standard	Size ¹⁾	$p_{\max abs}$ [bar] ²⁾	State ⁶⁾
А, В	Working port (high-pressure series) Fastening thread	SAE J518 ³⁾ DIN 13	1 1/2 in M16 × 2; 21 deep	400	0
M _A ; M _B	Measuring working pressure	DIN 3852	M14 × 1.5; 12 deep	400	Х
M ₁ ; M ₂	Measuring working pressure	DIN 3852	G 1/4; 12 deep	400	X
S _P	Control pressure	DIN 3852	M22 × 1.5; 14 deep	315	0
т	Fluid drain	DIN 3852	M42 × 2; 20 deep	4	х
T ₁ ; T ₂	Leakage/air bleeding	DIN 3852	G 1/4 in; 12 deep	4	х
К	Flushing	DIN 3852 ⁴⁾	M42 × 2; 20 deep	4	O ⁵⁾
R(L)	Control fluid return flow	DIN 3852 ⁴⁾	M42 × 2; 20 deep	4	O ⁵⁾
U	Bearing flushing	DIN 3852	M14 × 1.5; 12 deep	7	Х
P _{st}	Pilot pressure	ISO 228	G 1/2; 15 deep	315	piped up
E	Boost pressure	DIN 3852 ⁴⁾	M22 × 1.5; 14 deep	50	0
R _{KV}	Control fluid return flow	DIN 38524)	M22 × 1.5; 14 deep	100	piped up
Р	Control pressure	DIN 3852 ⁴⁾	M22 × 1.5; 14 deep	315	piped up

1) Observe the instructions in the instruction manual concerning the maximum tightening torques.

- 2) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.
- 3) Metric fastening thread is a deviation from standard.
- 4) The countersink can be deeper than as specified in the standard.
- 5) Depending on the installation position, K or R(L) must be connected (also see installation instructions in data sheet 92100).
- 6) O = Must be connected (plugged when delivered)
 X = Plugged (in normal operation)

424

Ø

€®

В

Δ

ø38

SP

39

ጠ

H

<u>79.4</u>

R_{KV}

View W

39

265

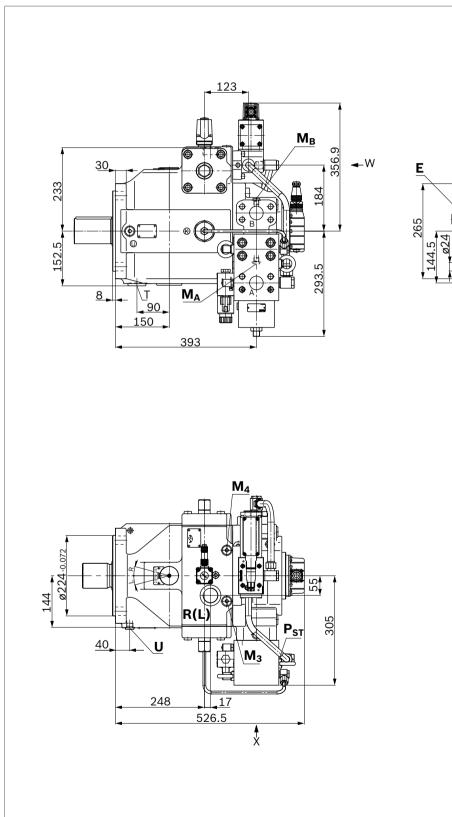
143.5 143.5

View X

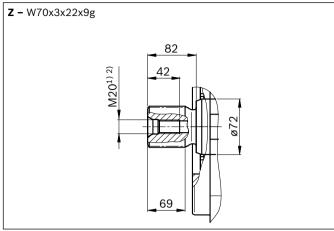
44.5 50.5

<u>79.4</u> ø38 M₁

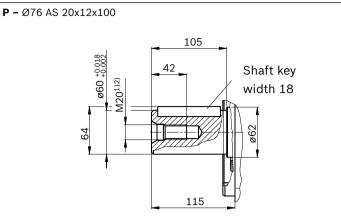
۲


Ŧ

<u>Τ</u>1 <u>M</u>2


Ø

Dimensions, size 355

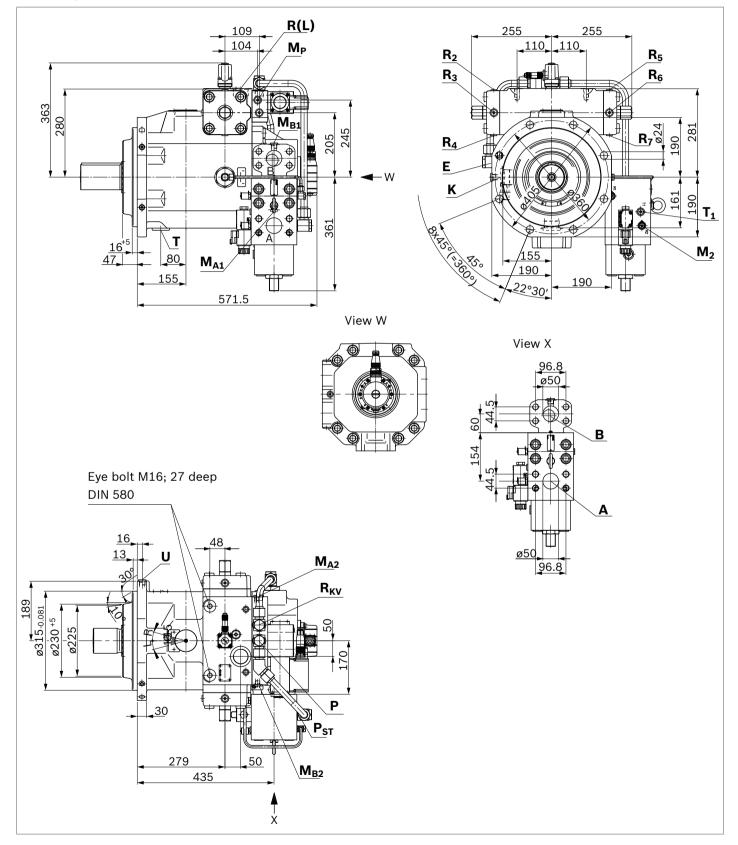

DS2 - secondary controlled unit with RVE check valve

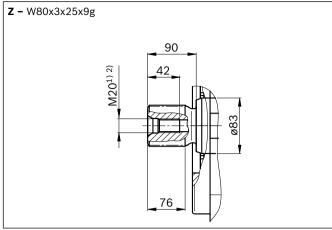
▼ Parallel keyed shaft DIN 6885

Ports		Standard	Size ¹⁾	$p_{\max abs}$ [bar] ²⁾	State ⁶⁾
А, В	Working port (high-pressure series) Fastening thread	SAE J518 ³⁾ DIN 13	1 1/2 in M16 × 2; 21 deep	400	0
M _A ; M _B	Measuring working pressure	DIN 3852	M14 × 1.5; 12 deep	400	Х
M ₁ ; M ₂	Measuring working pressure	DIN 3852	G 1/4; 12 deep	400	Х
M ₃ ; M ₄	Measuring working pressure	DIN 3852	M18 × 1.5; 12 deep	400	Х
SP	Control pressure	DIN 3852	M22 × 1.5; 14 deep	315	0
т	Fluid drain	DIN 3852	M42 × 2; 20 deep	4	Х
T ₁ ; T ₂	Leakage/air bleeding	DIN 3852	G 1/4 in; 12 deep	4	Х
К	Flushing	DIN 38524)	M42 × 2; 20 deep	4	O ⁵⁾
R(L)	Control fluid return flow	DIN 38524)	M42 × 2; 20 deep	4	O ⁵⁾
U	Bearing flushing	DIN 3852	M18 × 1.5; 12 deep	7	Х
P _{ST}	Pilot pressure	ISO 228	G 1/2; 15 deep	315	piped up
E	Boost pressure	DIN 38524)	M22 × 1.5; 14 deep	50	0
R _{KV}	Control fluid return flow	DIN 38524)	M22 × 1.5; 14 deep	100	piped up
Р	Control pressure	DIN 3852 ⁴⁾	M22 × 1.5; 14 deep	315	piped up

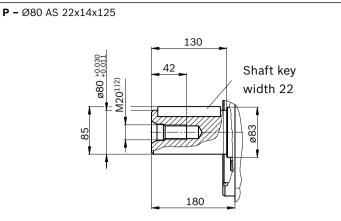
1) Observe the instructions in the instruction manual concerning the maximum tightening torques.

2) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.


3) Metric fastening thread is a deviation from standard.

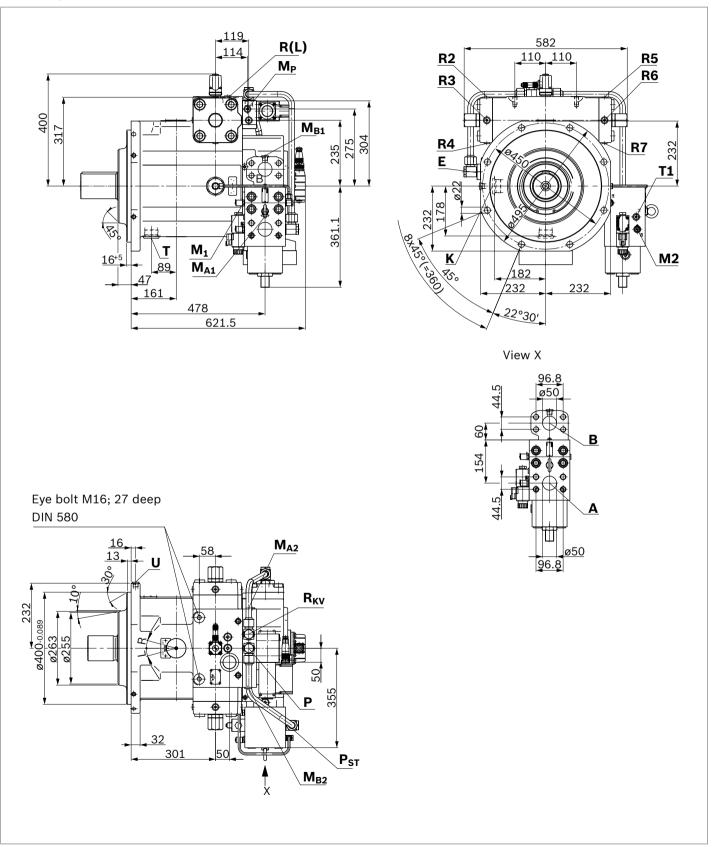

- 5) Depending on the installation position, **K** or **R(L**) must be connected (also see installation instructions in data sheet 92100).
- 6) O = Must be connected (plugged when delivered)X = Plugged (in normal operation)

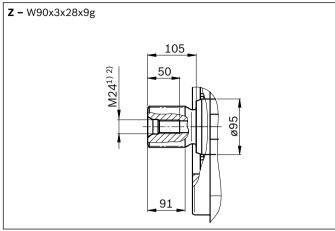
⁴⁾ The countersink can be deeper than as specified in the standard.


Dimensions, size 500

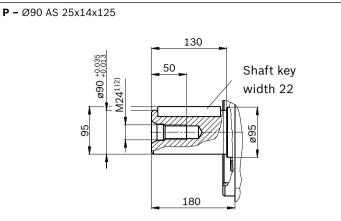
DS2 - secondary controlled unit with RVE check valve

▼ Parallel keyed shaft DIN 6885


Ports		Standard	Size ¹⁾	$p_{\max abs}$ [bar] ²⁾	State ⁶⁾
А, В	Working port (high-pressure series) Fastening thread	SAE J518 ³⁾ DIN 13	2 in M20 × 2.5; 24 deep	400	0
M _{A1} ; M _{B1}	Measuring working pressure	DIN 3852	M18 × 1.5; 12 deep	400	Х
M _{A2} ; M _{B2} , M _P	Measuring control pressure	DIN 3852	M14 × 1.5; 12 deep	315	Х
M ₁ ; M ₂	Measuring working pressure	DIN 3852	G 1/4; 12 deep	400	Х
т	Fluid drain	DIN 3852	M48 × 2; 20 deep	4	Х
T ₁ ; T ₂	Leakage/air bleeding	DIN 3852	G 1/4 in; 12 deep	4	Х
К	Flushing	DIN 3852 ⁴⁾	M48 × 2; 20 deep	4	O ⁵⁾
R(L)	Control fluid return flow	DIN 38524)	M48 × 2; 20 deep	4	O ⁵⁾
\mathbf{R}_2 to \mathbf{R}_7	Air bleeding the control	DIN 3852	M14 × 1.5; 12 deep	315	Х
U	Bearing flushing	DIN 3852	M18 × 1.5; 12 deep	7	Х
P _{ST}	Pilot pressure	ISO 228	G 3/4; 17 deep	315	piped up
E	Boost pressure	DIN 38524)	M27 × 2; 20 deep	50	0
R _{KV}	Control fluid return flow	DIN 38524)	M27 × 2; 16 deep	100	piped up
Р	Control pressure	DIN 3852 ⁴⁾	M27 × 2; 16 deep	315	piped up

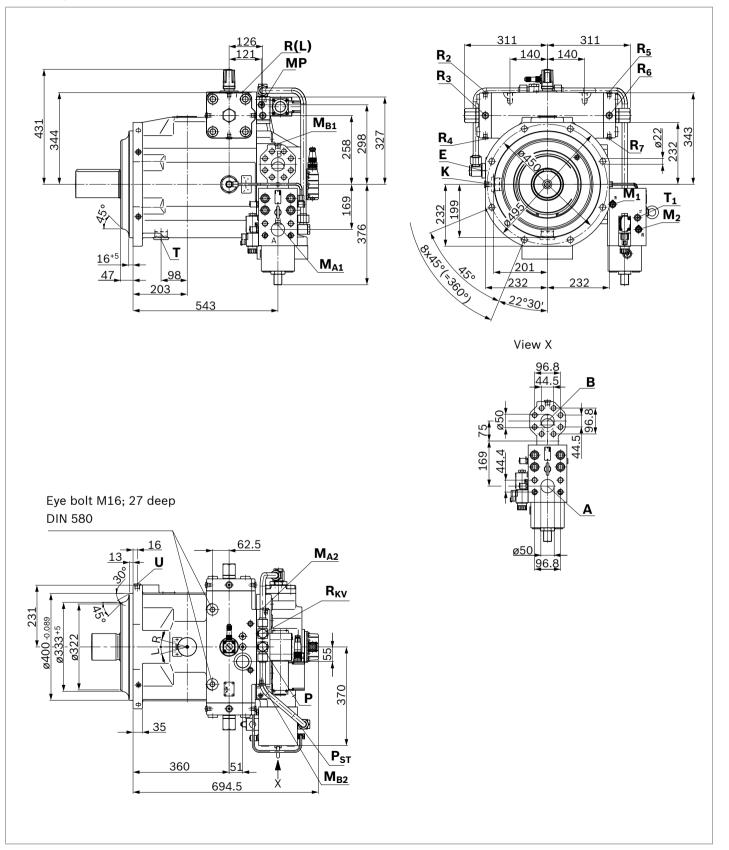

1) Observe the instructions in the instruction manual concerning the maximum tightening torques.

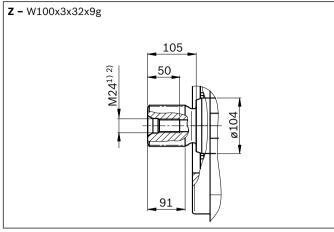
- 2) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.
- 3) Metric fastening thread is a deviation from standard.
- 4) The countersink can be deeper than as specified in the standard.
- 5) Depending on the installation position, K or R(L) must be connected (also see installation instructions in data sheet 92100).
- 6) O = Must be connected (plugged when delivered)
 X = Plugged (in normal operation)


Dimensions, size 750

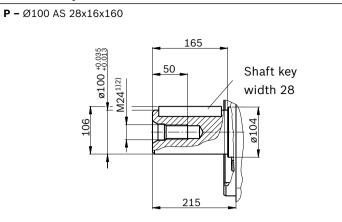
DS2 - secondary controlled unit with RVE check valve

▼ Parallel keyed shaft DIN 6885


Ports		Standard	Size ¹⁾	$p_{ m max\ abs}$ [bar] $^{2)}$	State ⁶⁾
А, В	Working port (high-pressure series)	SAE J518 ³⁾	2 in	400	0
	Fastening thread	DIN 13	M20 × 2.5; 28 deep		
M _{A1} ; M _{B1}	Measuring working pressure	DIN 3852	M18 × 1.5; 12 deep	400	Х
M _{A2} ; M _{B2} :M _P	Measuring working pressure	DIN 3852	M14 × 1.5; 12 deep	400	Х
M ₁ ; M ₂	Measuring working pressure	DIN 3852	G 1/4; 12 deep	400	Х
\mathbf{R}_2 to \mathbf{R}_7	Air bleeding the control	DIN 3852	M14 × 1.5; 12 deep	315	Х
т	Fluid drain	DIN 3852	M48 × 2; 20 deep	4	Х
T ₁ ; T ₂	Leakage/air bleeding	DIN 3852	G 1/4 in; 12 deep	4	Х
К	Flushing	DIN 38524)	M48 × 2; 20 deep	4	O ⁵⁾
R(L)	Control fluid return flow	DIN 38524)	M48 × 2; 20 deep	4	O ⁵⁾
U	Bearing flushing	DIN 3852	M18 × 1.5; 12 deep	7	Х
P _{ST}	Pilot pressure	ISO 228	G 3/4; 17 deep	315	piped up
E	Boost pressure	DIN 38524)	M27 × 2; 20 deep	50	0
R _{KV}	Control fluid return flow	DIN 38524)	M27 × 2; 16 deep	100	piped up
Р	Control pressure	DIN 38524)	M27 × 2; 16 deep	315	piped up


1) Observe the instructions in the instruction manual concerning the maximum tightening torques.

- 2) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.
- 3) Metric fastening thread is a deviation from standard.
- 4) The countersink can be deeper than as specified in the standard.
- 5) Depending on the installation position, K or R(L) must be connected (also see installation instructions in data sheet 92100).
- 6) O = Must be connected (plugged when delivered)X = Plugged (in normal operation)


Dimensions, size 1000

DS2 – secondary controlled unit with RVE check valve

▼ Parallel keyed shaft DIN 6885

Ports		Standard	Size ¹⁾	$p_{\max abs}$ [bar] $^{2)}$	State ⁶⁾
А, В	Working port (high-pressure series) Fastening thread	SAE J518 ³⁾ DIN 13	2 in M20 × 2.5; 24 deep	400	0
M _{A1} ; M _{B1}	Measuring working pressure	DIN 3852	M18 × 1.5; 12 deep	400	Х
M _{A2} ; M _{B2} :M _P	Measuring working pressure	DIN 3852	M14 × 1.5; 12 deep	400	Х
M ₁ ; M ₂	Measuring working pressure	DIN 3852	G 1/4; 12 deep	400	Х
\mathbf{R}_2 to \mathbf{R}_7	Air bleeding the control	DIN 3852	M14 × 1.5; 12 deep	315	Х
т	Fluid drain	DIN 3852	M48 × 2; 20 deep	4	Х
T ₁ ; T ₂	Leakage/air bleeding	DIN 3852	G 1/4 in; 12 deep	4	Х
К	Flushing	DIN 3852 ⁴⁾	M48 × 2; 20 deep	4	O ⁵⁾
R(L)	Control fluid return flow	DIN 38524)	M48 × 2; 20 deep	4	O ⁵⁾
U	Bearing flushing	DIN 3852	M18 × 1.5; 12 deep	7	Х
P _{ST}	Pilot pressure	ISO 228	G 3/4; 17 deep	315	piped up
E	Boost pressure	DIN 38524)	M27 × 2; 20 deep	50	0
R _{KV}	Control fluid return flow	DIN 3852 ⁴⁾	M27 × 2; 16 deep	100	piped up
Р	Control pressure	DIN 3852 ⁴⁾	M27 × 2; 16 deep	315	piped up

1) Observe the instructions in the instruction manual concerning the maximum tightening torques.

2) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

3) Metric fastening thread is a deviation from standard.

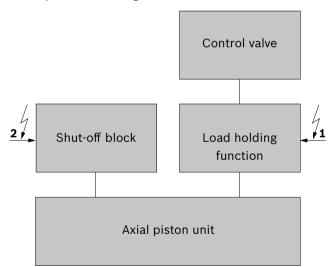
- 5) Depending on the installation position, **K** or **R**(**L**) must be connected (also see installation instructions in data sheet 92100).
- 6) O = Must be connected (plugged when delivered)
 X = Plugged (in normal operation)

⁴⁾ The countersink can be deeper than as specified in the standard.

32 **A4VSG Series 10 and 3x** | Axial piston units with DS2 secondary closed loop control A4VSG...DS2 for use in winch and crane applications

A4VSG...DS2 for use in winch and crane applications

For use in cranes and winches, specifically in the marine and offshore sectors, safety functions are required to comply with the specifications of the classification societies. For this purpose control blocks are available, which guarantee the required emergency functions such as holding the load in the event of a hydraulic system failure, emergency lifting and lowering, or the emergency jettisoning of a load in the event of a system failure.


The following combinations are available:

- Holding the load in the event of a hydraulic system failure
- Holding the load in the event of a hydraulic system failure and manual overload protection MOPS (Manual Overload Protection System)
- Emergency lifting and lowering in the event of a system failure

Holding the load in the event of a hydraulic system failure Order item 2:

Electrically releasable shut-off block for combination with load holding function LS 1363 Type code LL/LR

▼ Setup schematic diagram

1 Load holding function

- ► **0** V = load holding function **on**, winch drive **off**.
- ► 24 V = load holding function off, winch drive on.

2 Shut-off block

- ► **0 V** = Enable axial piston unit **inactive**
- ▶ 24 V = Enable axial piston unit active.

The load holding function with LS 1363 is mounted between the control valve and the secondary unit and allows the secondary unit to swivel into a predefined end stop in an emergency. This function ensures that when the shut-off block is closed, the load is held with maximum torque and no high pressure without the use of any external closed loop control or PLC.

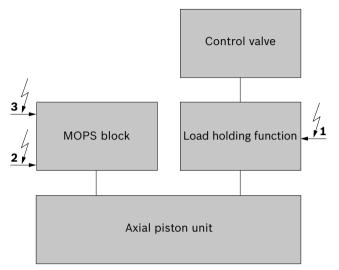
The clockwise (LR) / counter-clockwise (LL) swivel parameter is necessary to determine the correct effective direction of the holding torque.

For LX, the load holding function LS 1363 is not piped up when delivered and can thus be piped up to adapt to the swivel direction. The end user is then responsible for the piping.

In the secondary controlled winch drive, the LS1363 is switched on with 24 V and is inactive. The emergency function is activated when the valve is switched off. The winch drive can no longer be controlled.

Notice

This order item 2 does not have integrated maximum pressure limitation as standard. This must be provided externally or as a mounting block. Please contact us for a technical explanation


(documentation@boschrexroth.de).

Holding the load in the event of a hydraulic system failure and manual overload protection MOPS

Order item 3:

Electrically releasable shut-off block for combination with load holding function LS 1363, type code LL/LR, and manual overload protection MOPS

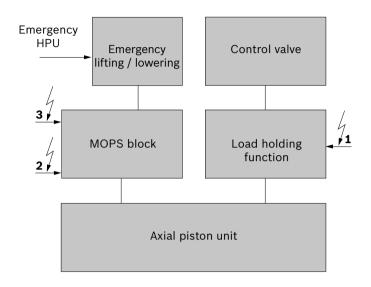
Setup schematic diagram

1 Load holding function

- ► **0** V = load holding function **on**, winch drive **off**.
- ► 24 V = load holding function off, winch drive on.

2 MOPS block shut-off function

- ► **0 V** = Enable axial piston unit **inactive**
- > 24 V = Enable axial piston unit active


3 MOPS block pressure limitation

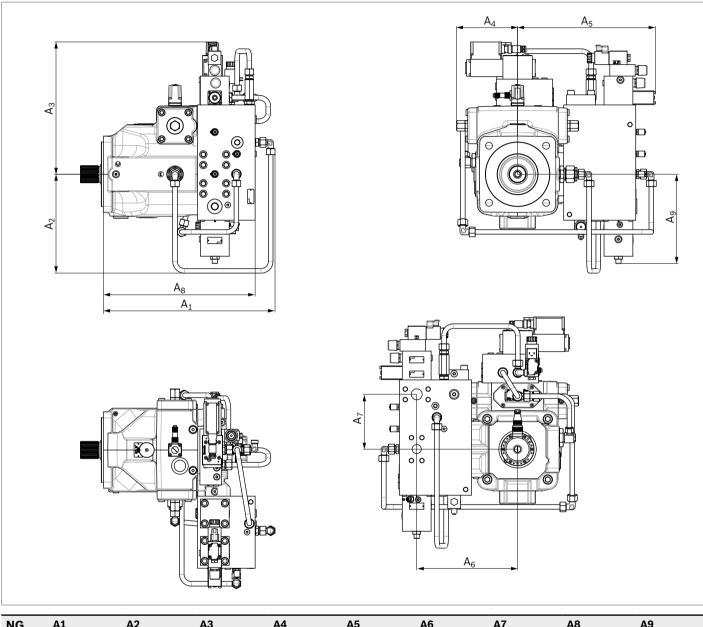
- ▶ **0 V** = System pressure p_{HD} **on**, MOPS function **off**
- 24 V = System pressure p_{HD} off, MOPS function on

In addition to holding the load with maximum torque and no high pressure, this block combination also enables the "manual overload protection" function, which can be used to drop the load in the event of an emergency in order to secure the crane and the crew. The function of the load holding function with LS1363 is described on page 32.

Setup schematic diagram for emergency lifting and lowering

In the event of a system failure, this function and an emergency HPU can be used to lift the suspended load on board again or to lower it to the bottom of the sea with limited function.

The load holding function, MOPS block shut-off function and MOPS block pressure limitation are controlled as described under order item 3 on the left


Emergency lifting and lowering

Notice

The emergency lifting and lowering function must be designed specifically for the project. Please contact us for a technical explanation (documentation@boschrexroth.de). 34 **A4VSG Series 10 and 3x** | Axial piston units with DS2 secondary closed loop control Dimensions of all valve block attachments

Dimensions of all valve block attachments

DS2 - Secondary controlled unit with all valve block attachments (order item 14, type code 3)

NG	A1	A2	A3	A4	A5	A6	A7	A8	A9
40	401	260	365	130	342	225	83	332	227
71	433	265	360	158	357	240	88	364	232
125	519	340	441	177	426	305	115	450	307
180	519	340	441	177	436	315	115	450	307
250	595	343	459	212	478	350	191	526	310
355	602	344	447	212	498	370	190	533	311
500	674	469	447	254	545	410	165	605	436
750	717	469	447	292	585	450	165	648	436
1000	782	484	462	309	600	465	180	713	451

Project planning notes

- The A4VSG axial piston variable pump is designed to be used in closed circuit.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified skilled personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, this can be requested from Bosch Rexroth.
- Before finalizing your design, please request a binding installation drawing.
- The specified data and notes contained herein must be observed.
- Depending on the operating conditions of the axial piston unit (working pressure, fluid temperature), the characteristic curve may shift.
- The characteristic curve may also shift due to the dither frequency or control electronics.
- Preservation: Our axial piston units are supplied as standard with preservative protection for a maximum of 12 months. If longer preservative protection is required (maximum 24 months), please specify this in plain text when placing your order. The preservation periods apply under optimal storage conditions, details of which can be found in the data sheet 90312 or in the instruction manual.
- Not all versions of the product are approved for use in a safety function according to ISO 13849. Please consult the responsible contact person at Bosch Rexroth if you require reliability parameters (e.g. MTTF_d) for functional safety.
- Depending on the type of control used, electromagnetic effects can be produced when using solenoids. Use of the recommended direct current (DC) on the electromagnet does not produce any electromagnetic interference (EMI), nor is the electromagnet influenced by EMI. Potential electromagnetic interference (EMI) exists if the solenoid is energized with a modulated direct current (e.g. PWM signal). The machine manufacturer should conduct appropriate tests and take appropriate measures to ensure that other components or operators (e.g. with a pacemaker) are not affected by the potentiality.

- Pressure controllers are not safeguards against pressure overload. Be sure to add a pressure relief valve to the hydraulic system.
- Working ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The working ports and function ports are only intended to accommodate hydraulic lines.

Safety instructions

- During and shortly after operation, there is a risk of getting burnt on the axial piston unit and especially on the solenoids. Take the appropriate safety measures (e.g. by wearing protective clothing).
- Moving parts in control equipment (e.g. valve spools) can, under certain circumstances, get stuck in position as a result of contamination (e.g. contaminated hydraulic fluid, abrasion, or residual dirt from components). As a result, the hydraulic fluid flow and the build-up of torque in the axial piston unit can no longer respond correctly to the operator's specifications. Even the use of various filter elements (external or internal flow filtration) will not rule out a fault but merely reduce the risk. The machine/system manufacturer must test whether additional measures are required on the machine for the relevant application in order to bring the driven consumer into a safe position (e.g. safe stop) and ensure any measures are properly implemented.

Bosch Rexroth AG

An den Kelterwiesen 14 72160 Horb a.N., Germany Tel. +49 7451 92-0 info.ma@boschrexroth.de www.boschrexroth.com

Bosch Rexroth AG

Zum Eisengießer 1 97816 Lohr am Main, Germany Tel. +49 (0)9352 18-0 documentation@boschrexroth.de www.boschrexroth.com © Bosch Rexroth AG 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. The data specified within only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.